Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trop Med Infect Dis ; 7(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36548665

RESUMO

In 2017-2019, Brazil recorded its most severe outbreak of yellow fever due to the spread of the virus (YFV) in the country's southeast. Here, we investigated mosquito fauna and the spatial distribution of species in a primatology center in the Atlantic Forest bioregion in Rio de Janeiro state to evaluate the risk of YFV transmission in distinct environments. Fortnightly mosquito collections were performed from December 2018 to December 2019 at 12 sites along a disturbance gradient from a modified environment to 400 m inside the forest. We used ovitraps, BG-Sentinel, and protected human attraction (PHA). A total of 9349 mosquitoes of 21 species were collected. The collection method strongly influenced the captured fauna, with species such as Anopheles cruzii, Psorophora ferox, Runchomyia cerqueirai, Wyeomyia incaudata, Wy. theobaldi, Sabethes chloropterus, and Sa. albiprivus only collected via PHA. Collections with ovitraps resulted in low diversity and richness, with Haemagogus leucocelaenus and Hg. janthinomys/capricornii predominating. The diverse local fauna and the abundance and ubiquity of the latter species, which are the primary vectors of YFV, indicated that this area was highly vulnerable to arbovirus transmission, especially yellow fever, highlighting the need for improved surveillance and vaccination coverage in human and captive endangered non-human primates.

2.
Viruses ; 14(10)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298786

RESUMO

Beside humans, thousands of non-human primates (NHPs) died during the recent outbreak caused by the yellow fever virus (YFV) in Brazil. Vaccination of NHPs against YFV with the YF 17DD attenuated virus has emerged as a public health strategy, as it would reduce sylvatic transmission while also preserving endangered susceptible species. The hypothesis of establishing an uncontrolled transmission of this attenuated virus in nature was raised. We assessed vector competence of four sylvatic mosquito species, Haemagogus leucocelaenus, Haemagogus janthinomys/capricornii, Sabethes albiprivus, and Sabethes identicus, as well as the urban vector Aedes aegypti for YF 17DD attenuated vaccine virus when fed directly on eleven viremic lion tamarins or artificially challenged with the same virus. No infection was detected in 689 mosquitoes engorged on viremic lion tamarins whose viremia ranged from 1.05 × 103 to 6.61 × 103 FFU/mL, nor in those artificially taking ≤ 1 × 103 PFU/mL. Low viremia presented by YF 17DD-vaccinated New World NHPs combined with the low capacity and null dissemination ability in sylvatic and domestic mosquitoes of this attenuated virus suggest no risk of its transmission in nature. Thus, vaccination of captive and free-living NHPs against YFV is a safe public health strategy.


Assuntos
Aedes , Leontopithecus , Febre Amarela , Animais , Humanos , Vírus da Febre Amarela , Febre Amarela/prevenção & controle , Febre Amarela/veterinária , Febre Amarela/epidemiologia , Mosquitos Vetores , Viremia/prevenção & controle , Vacinas Atenuadas , Primatas
3.
Front Microbiol ; 10: 1079, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178835

RESUMO

The current outbreak of yellow fever virus (YFV) that is afflicting Brazil since the end of 2016 probably originated from a re-introduction of YFV from endemic areas into the non-endemic Southeastern Brazil. However, the lack of genomic sequences from endemic regions hinders the tracking of YFV's dissemination routes. We assessed the origin and spread of the ongoing YFV Brazilian outbreak analyzing a new set of YFV strains infecting humans, non-human primates (NHPs) and mosquitoes sampled across five Brazilian states from endemic and non-endemic regions between 2015 and 2018. We found two YFV sub-clade 1E lineages circulating in NHP from Goiás state (GO), resulting from independent viral introductions into the Araguaia tributary river basin: while one strain from 2017 clustered intermingled with Venezuelan YFV strains from 2000, the other YFV strains sampled in 2015 and 2017 clustered with sequences of the current YFV outbreak in the Brazilian Southeastern region (named YFV2015-2018 lineage), displaying the same molecular signature associated to the current YFV outbreak. After its introduction in GO at around mid-2014, the YFV2015-2018 lineage followed two paths of dissemination outside GO, originating two major YFV sub-lineages: (1) the YFVMG/ES/RJ sub-lineage spread sequentially from the eastern area of Minas Gerais state to Espírito Santo and then to Rio de Janeiro states, following the Southeast Atlantic basin; (2) the YFVMG/SP sub-lineage spread from the southwestern area of Minas Gerais to the metropolitan region of São Paulo state, following the Paraná basin. These results indicate the ongoing YFV outbreak in Southeastern Brazil originated from a dissemination event from GO almost 2 years before its recognition at the end of 2016. From GO this lineage was introduced in Minas Gerais state at least two times, originating two sub-lineages that followed different routes toward densely populated areas. The spread of YFV outside endemic regions for at least 4 years stresses the imperative importance of the continuous monitoring of YFV to aid decision-making for effective control policies aiming the increase of vaccination coverage to avoid the YFV transmission in densely populated urban centers.

4.
Parasit Vectors ; 10(1): 605, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246237

RESUMO

BACKGROUND: Alternative transmission routes have been described for Zika virus (ZIKV). Here, we assessed for the first time the venereal transmission of ZIKV between Aedes aegypti under laboratory conditions. RESULTS: Orally-infected mosquito females were able to transmit the virus to males venereally, and males inoculated intrathoracically were capable of infecting females during mating. The genome of venereally-transmitted virus recovered from males was identical to that of ZIKV ingested by mated females. CONCLUSION: We conclude that venereal transmission between Aedes mosquitoes might contribute to Zika virus maintenance in nature.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Infecções Sexualmente Transmissíveis , Infecção por Zika virus/transmissão , Zika virus/isolamento & purificação , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA